The successful incorporation of recycled aggregates in pavement design is important for achieving a higher level of sustainability in our transportation network. However, recycled aggregates are non-soil materials and have different unsaturated hydraulic and resilient modulus characteristics. This study investigated the unsaturated hydraulic properties and impact of soil suction on resilient modulus for compacted recycled aggregates used as unbound base course, including recycled asphalt pavement (RAP), recycled concrete aggregate (RCA), and recycled pavement material (RPM). Hydraulic properties and relationships including the soil-water characteristic curve (SWCC) and saturated and unsaturated hydraulic conductivity (Ks and K), were characterized using a hanging column test coupled with a large-scale testing cell. Regression of the hydraulic parameters from SWCC and K data for each type of recycled materials was completed. The effect of water repellency on hydraulic properties was evaluated. Development of testing equipment and procedures that incorporate the effect of soil suction during resilient modulus measurement is presented. A mathematical model to predict resilient modulus based on bulk stress, octahedrons shear stress, and soil suction is proposed. In addition, empirical relationships for predicting summary resilient modulus (SRM) via soil suction and SRM at optimum compaction for recycled aggregates are presented. Measured SRM and SWCCs for different types of recycled aggregate were used to evaluate flexible pavement performance according to the approach outlined in the Mechanistic-Empirical Pavement Design Guide (M-EPDG). The impact of environmental effects (including freeze-thaw cycles and changes in temperature) on the resilient modulus of recycled aggregates and subsequent pavement performance are evaluated and presented in this dissertation.
The full thesis may be found in the following file: