Chemical Characterization of Leachate Produced from RCA

The proposed NPDES regulations in the State of Washington, requiring a pH below 8.5 at the point of discharge from recycled concrete aggregate (RCA), may have the unintended consequence of prohibiting the use of recycled concrete materials in commonly accepted concrete recycling applications; e.g., as unbound base course or fill material or aggregate in ready-mix concrete. A more appropriate method to determine compliance with pH regulations would be to determine a “point of compliance” and enforce pH regulations at that point. However, selection of an appropriate point of compliance is hindered by disagreement in previous studies on the pH of leachate as well as its acid neutralizing capacity (alkalinity). Most laboratory studies and many field studies suggest that the leachate pH should be very high (e.g., >9) for extended periods of time; however, the NAICS data presented in Figure 1 and results of our own field studies (Chen et al., 2012; Chen et al., 2013) suggest that leachate pH values above 8.5 are actually infrequent.   Here we propose to couple laboratory leaching studies, utilizing representative saturation and geochemical conditions, with results from a forensic examination of an RCA base course located at the MnROAD test facility to determine mechanisms that may limit the production of high pH of leachate.

For more information:

RMRC Proposal – RCA Leachate pH

State DOT Life Cycle Benefits of Recycled Material in Road Construction

RMRC and various governmental agencies have developed fact sheets on various recycled materials and industrial byproducts for their use in highway construction applications. However, these fact sheets often lack direct information on sustainability assessment characteristics, i.e., greenhouse emissions, energy and water consumption, and life-cycle cost benefits. Although state transportation departments have been at the forefront of introducing recycled materials, they have not been able to clearly convey the benefits in a quantitative and transparent manner using easily understood metrics.

The first objective of this study is to develop/update fact sheets on various recycled materials and industrial byproducts that are being used in highway construction. New information generated in recent years relative to their engineering properties and environmental impact questions will be added as well as relevant life cycle assessment data. The second objective of this study is to develop a tool by which the state system-wide material use quantities can be used to calculate the life cycle benefits associated with the incorporation of recycled materials and industrial byproducts to highway pavement construction.

For more information:

Preliminary report for GeoChicago 2016 Conference: GeoChi Statewide

TRB Report: Life Cycle Benefits of Recycled Materials in Highway Construction TRB

Project Summary: Summary