A lack of data on quantified benefits that can be achieved through the
application of sustainability strategies acts as a barrier to the promotion of sustainable
movement. For this reason, two frameworks were developed to provide a quantitative
methodology for evaluating the benefits of sustainable construction and to rate the
relative benefits of construction projects compared to projects using conventional
construction concepts: a pairing method of comparative environmental and economic
life-cycle analyses for assessing construction; a rating system, the Building
Environmentally and Economically Sustainable Transportation Infrastructure-
HighwaysTM.
A pairing method was used to quantify the benefits of using recycled materials
in highway pavements by conducting life-cycle assessment and life-cycle cost analysis
on pavements consisting of conventional and recycled materials for a highway
construction project in Wisconsin. Results of the analysis indicate that using recycled
materials in the base and subbase layers of a pavement can result in reductions in
global warming potential, energy and water consumption, and hazardous waste
generation while also extending the service life of the pavement. In addition, using
recycled materials in the base and subbase layers can result in a life-cycle cost savings.
The full thesis may be found in the following file: