Unbound Pavement Applications of Excess Foundry System Sands: Subbase/Base Material

> Tuncer B. Edil University of Wisconsin-Madison Recycled Materials Resource Center

Participant Job Description

- Which of the following describes your job?
- Civil Engineer or Environmental Engineer
- Geologist
- Foundry Operator
- Transportation Materials Engineer
- Construction Manager

Paricipant Background

- Private sector
- Public sector
- Planner
- Designer
- Regulator
- Contractor
- Marketing

UNBOUND PAVEMENT APPLICATIONS OF ESS

Roadway structural systems

- Working Platform
- Subbase

INTRODUCTION

Majority of the paved roads in the United States constructed with **FLEXIBLE PAVEMENTS**

Deformation during construction on soft subgrade :

- Impede construction equipment
- Complicate placement of subbase, base, and asphalt

requires working platform

Soft Subgrade

According to Tensar (1989) the soft subgrade problems can be as bad as this!!

Questions:

- How to determine thickness of working platform to limit total deflection to a certain value under construction traffic
- How to determine the thickness of working platform constructed with foundry sands

WORKING PLATFORM EQUIVALENCY SELECTION METHOD

Equivalency as defined in this research requires that total deflection of the alternative material (δ_{ta}) equal to that of breaker run (δ_{tb}) under the same load at 1000 cycles over soft subgrade.

METHODOLOGY TO SELECT THICKNESS OF WORKING PLATFORM BASED ON δ_t

A chart is developed showing:

- The thickness of each working platform material to limit δ_t to a certain value

- Equivalency between breaker run and alternative materials in terms of $\delta_{t} (\delta_{t-alternative materials} = \delta_{t-breaker run})$

Design Chart Relating Thicknesses

Foundry Byproduct	Water Content	Thickness in meters (inches in parenthesis) to limit total deflections to 25 mm (1 in)
Foundry Sand	21%	1.81 (71)
Foundry Sand	16%	0.32 (13)
Foundry Slag	Not sensitive to water content	2.55 (100)

Recap

- What are the requirements for a working platform over soft subgrade: (a) limit total deflections, (b) allow heavy construction traffic without getting bogged down, (c) achieve this only during construction, (d) all of the above?
- True or false: foundry sand bentonite content is not important
- True or false: foundry sand water content is important during construction

OBJECTIVES OF EES AS SUBBASE OF THE ROADWAY STRUCTURAL SYSTEMS STUDY

- To catalog pertinent engineering properties of ESS for use in roadway structural system (both as working platform and subbase) and correlate these properties to index properties
- To assess effect of water content and compactive effort on engineering properties.

SCOPE OF THE STUDY

- 12 clay-bonded ESS, 1 chemically bonded ESS, a base sand, and 2 reference materials (meeting WisDOT base and subbase specs) were tested in the laboratory.
- ESS from WI, IL, MI & IN
- Tests Conducted:
 - Index Properties
 - Compaction
 - CBR
 - Unconfined Compression
 - Resilient Modulus

INDEX PROPERTIES

- D_{10} : 0.002 to 0.18 mm
- P₂₀₀ : 1.1 to 16.4%
- Clay Content (< 2 μm) : 0.8 to 10%
- Active Clay Content (methylene blue): 5.1 to 10.2%
- C_u : 1.4 to 130 and C_c : 1.1 to 69
- LL : NP to 27 PI : NP to 8 (required rehydration)
- Particle Roundness: 0.55 to 0.69 (subrounded to subangular)
- $G_s : 2.52 \text{ to } 2.73$
- Classify as: SC, SP, or SP-SM or A-2-4 or A-3

Particle Diameter (mm)

Recap

- What is the primary characteristic that varies between foundry sands : (a) sand roundness, (b) fines and clay content, or (c) color?
- True or false: Foundry sands have similar grain size distribution characteristics.
- True or false: Foundry sands are essentially like poorly graded sand or sand with fines.
- True or false: Foundry sand meet the subbase specifications exactly.

COMPACTION CHARACTERISTICS

- Some ESS behave as granular material and some cohesive.
- Hydration of compaction samples for 1 week is needed to reactivate the thermally deactivated clay
- Standard Proctor Maximum Dry Unit Weights: 17.26 to 18.39 kN/m³
- Optimum Moisture Contents: 9.1 to 13.8%
- Vibratory Table Maximum Dry Unit Weights: 16.55 to 17.60 kN/m³

 CBR: 4 to 40 at optimum moisture content with an average 20 (20-30 considered very good for subbase)

 Can be estimated empirically from standard Proctor maximum density, percent fines, and roundness:

 $CBR = 32.4 \gamma_{dm} - 1.93 P_{200} - 264 R_{o} - 361$

Comparable to reference subbase
Modified Proctor gives markedly higher CBR

- True or false: Compaction curves for foundry sands appear very different than those for soils.
- True or false: Standard compaction procedure for soils can be used for foundry sands
- True or false: CBR values for all foundry sands rate as "good quality" for subbase purposes

Resilient Modulus: BC < 6%

Effect of Compaction Condition: BC < 6%

RESILIENT MODULUS

Power function best represented the data

$$M_r = K_1(\sigma_b)^{K_2}$$

where σ_b is bulk stress ($\sigma_b = \sigma_d + 3 \sigma_c$)

RESILIENT MODULUS RELATIONSHIPS $K_1 = 612\gamma_{dm} - 111$ CBR $K_{2} = 0.696 - 2.22 \times 10^{-5} K_{1}$ $K_2 = 0.049P_c - 3.61D_{10}$

RESILIENT MODULUS

- Resilient modulus close to reference base material's for foundry sands with BC < 6%
- Resilient modulus comparable to reference subbase material's for foundry sands with BC > 6% (for optimum and dry of optimum conditions)
- At low σ_b (<200 kPa) which is typical in pavements, M_r of ESS is higher than reference subbase material's

Deformation after construction: (Accumulation of plastic shear strain and consolidation of the subgrade)

 Cracking or rutting of the asphalt under repeated traffic loading

Subgrade

 $SN = SN_1 + SN_2m_2 + SN_3m_3$ $SN_i = a_i \times D_i, a_i = f(M_{r-i})$

Effective Roadbed M_r

SUBGRADE

Structural Contribution as a Subbase

 $a_3 = 0.227 \log M_{r-3} - 0.839$ SN₃ = $a_3 \times D_3$

Permanent deformation analyses using resilient moduli of foundry sands

- Rate of accumulation very low (ε ~ 5.0x10⁻⁶ per load application)
- Permanent deformation very low, typically < 0.01 mm after 10 million load applications
- Permanent strain comparable to reference subbase, more than reference base
- Minimize rutting & improve performance of rigid pavements

- True or false: Excess foundry system sands do not offer a viable and economical alternative as working platform or a subbase material.
- True or false: ESS are not all the same and their properties depend on their fines and active clay content as well as particle shape.
- True or false: Large variety of ESS have resilient modulus comparable or higher than granular subbase material.

Compaction with Padfoot Compactor

Station

Maximum Deflection (mm) at 90 kN

Elastic Modulus (MPa)