

Building Environmentally and Economically Sustainable Transportation-Infrastructure-HighwaysTM

(BE²ST-in-HighwaysTM)

Presented by: Tuncer B. Edil, PhD, PE, D. GE

Recycling Materials Resource Center/University of Wisconsin-Madison

What is sustainable construction?

☐ As an action item of *Agenda 21*

Promote the increased use of energyefficient designs and technologies in an economically and environmentally appropriate way (construction industry: activities 7.69 (c))

☐ Other key definitions (Kibert, Gambatese, etc.)

- 3 Rs (Reduce, Reuse, Recycle)
- Reduce waste and emission
- Increase health and safety

Why measure it?

- ☐ Verifying the improvement in sustainability
- Planning and forecasting
- ☐ Competition & Rewarding
- ☐ Regulatory and standards compliance

How to measure it?

☐ Coupling of LCA and LCCA

- LCA: a technique to assess the environmental aspects and potential impacts associated with construction projects
- LCCA: a financial-based decision making tool for long-term assessment of construction projects that can be used to systematically determine costs

☐ Rating system

- LCA, LCCA, and Social indicators
- Weighting
- Thresholds for labeling
- AMOEBA* to help continuous development

⁴

Target Values of BE²ST-in-HighwaysTM

Structure of BE²ST-in-HighwaysTM

- * User needs, laws, local ordinances, and quality requirement
- ** Preservation of historic site and schedule requirement

Rating Procedure

- ☐ Requirements
 - Transparency
 - Repeatability
 - Considering tradeoffs

The BE²ST-in-HighwayTM Software

☐ A standard measurement tool to provide transparency/repeatability in rating

☐ Schematic of 8 alternative pavement designs for the Baraboo Bypass project

Design #	Surface type	Recycled material in surface	Thickness of surface (mm)	Base type	Thickness of base (mm)	Recycled Material in base
F-1 Reference	НМА	No	140	Aggregate	152	No
F-2		RAP (15%)	140	Aggregate	152	No
F-3		No	140	RPM with 10% FA	94	RPM with 10% FA
F-4		RAP (15%)	140	RPM with 10% FA	94	RPM with 10% FA
R-1		FA 15%	254	Aggregate	152	No
R-2	PCC	FA 30%	254	Aggregate	152	No
R-3		FA 15%	254	RPM with 10% FA	94	RPM with 10% FA
R-4		FA 30%	254	RPM with 10% FA	94	RPM with 9

☐ IRI of the eight alternative designs predicted using M-EPDG

☐ Global warming potential of the eight alternative designs

☐ Energy consumption for the eight alternative designs

☐ Water consumption for the eight alternative designs

☐ Life cycle cost of the eight alternative designs

☐ Points obtained and total rating score

Design	Energy	GWP*	Recycling	Water	LCC **	Traffic Noise	Hazard Material	SCC ***	Total Score
F-2	0.2	0.2	2.2	0.3	0.2	1.0	0.3	0.8	29
F-3	2.0	2.0	4.0	2.0	2.0	1.0	2.0	1.3	91
F-4	2.0	2.0	4.0	2.0	2.0	1.0	2.0	1.4	91
R-1	1.0	0.0	0.4	0.0	2.0	0.0	2.0	0	30
R-2	1.4	0.4	0.7	0.0	2.0	0.0	2	0.1	37
R-3	2.0	2.0	4.0	1.0	2.0	0.0	2.0	0.7	76
R-4	2.0	2.0	2.0	2.0	2.0	0.0	2.0	0.9	72

*** SCC: Social Cost of Carbon

^{*} GWP: Global Warming Potential, ** LCC: Life Cycle Cost,

☐ Final screen shot of the BE²ST-in-HighwaysTM program for case F-4

Summa	Execution		Project Name: State Route:	Baraboo Bypass (F-4) US-12		
				Length:	1 mile	
				Unit SCC	\$69/Mg-CO2	
Criteria	Target	Reference	Alternative	Performance		
Energy Use (MJ)	>= 10% Reduction (1 pt) >= 20% Reduction (2 pt)	16,953,724	9,674,923	42.93%	☐ Baraboo Bypas	s (F-4)
GWP (Mg)	>= 10% Reduction (1 pt) >= 20% Reduction (2 pt)	884	506	42.84%		
In Situ Recycling (CY)	>= 10% Recycling Rate (1 pt) >= 20% Recycling Rate (2 pt)	0.00	1302.40	36.20%	Energy Hazardo 2	Global Warming In situ Recycle
Total Recycling (CY)	>= 10% Recycled Content (1 pt) >= 20% Recycled Content (2 pt)	0.00	1769.78	49.18%	us Waste 1.5	
Water Consumption (kg)	>= 5% Reduction (1 pt) >= 10% Reduction (2 pt)	4,702	2,660	43.42%	Traffic 0.5	
Life Cycle Cost (\$)	>= 5% Reduction (1 pt) >= 10% Reduction (2 pt)	\$2,121,147 \$60,996	\$983,868	53.62%		
Social Carbon Cost (\$)	>= \$19,750/mi Saving (1 pt) >= \$39,500/mi Saving (2 pt)		\$34,914	\$26,082	scc	Recycling
Traffic Noise (no unit)	HMA (1 pt) SMA or OGFC (2 pt)	-	1	1	rcc	Water onsume
Hazardous Waste (kg)	>= 10% Reduction (1 pt) >= 20% Reduction (2 pt)	181,991	104,348	42.66%		
Accomplished Score 90.69			1			
Awarded Label Green Highway Gold				1		

SMA: Stone Matrix Asphalt

OGFC: Open Graded Friction Courses

Conclusion

- ☐ Case study using BE²ST-in-Highways[™] reveals
 - Modest changes only to a pavement design yield significant environmental and economic benefits
 - √ 43% reduction in energy and GWP, 54% reduction in LCC
 - The superior material properties of some recycled materials
 - ✓ Reduce the amount of material consumption

or

✓ Extend the service life of the highway structure

Thus, less adverse environmental impacts and lower life-cycle cost

☐ BE²ST-in-HighwaysTM supports continuous project improvement

Questions & Comments!