

Characterizing Engineering Properties of Foundry Sands

Craig H. Benson, PhD, PE Recycled Materials Resource Center University of Washington chbenson@u.washington.edu www.recycledmaterials.org

[©] Recycled Materials Resource Center 20087

Participant Background

Which of the following describes your training:

- Civil Engineer or Environmental Engineer.
- Geologist
- Environmental scientist
- Other

Participant Background

Which describes your employment:

- Private sector
- Public sector
- Designer
- Regulator
- Construction

What is an iron foundry?

- An iron foundry is a manufacturing plant where molten iron is poured into molds to make iron products.
- Some common products include brake parts, gearboxes, propellers, and valves.
- Molds are formed with "green" sand, "no bake" sand, & "cores"
- Excess foundry sands used in construction usually are a mixture of green sand (predominant) and core sand or no-bake sand.

A METAL CASTING POURED IN A SAND MOLD

What is foundry sand?

Foundry sands are sand-bentonite mixtures.

A METAL CASTING POURED IN A SAND MOLD

What is a core?

Black portion is green sand mold.

Orange is core, which is prepared with a polymeric binder. Cores form internal cavities.

Green sand can be reconstituted into a new mold. Cores generally are used one time.

Cores generally need to be crushed prior to use in construction applications.

Why is foundry sand discarded?

- High temperature and pressure degrade the sand over time.
- Sand becomes contaminated with debris (flashing, dust, core pieces etc).
- New ingredients (sand, bentonite, are added to ensure sand has suitable properties.
- Addition of new ingredients results in too much sand in the system, or "excess" sand. Thus, some of the sand is removed and discarded.
- Discarded sand is sometimes referred to as "excess system sand," or ESS.

Foundry sand grades and shapes easily.

Compacts well with modest amount of moisture.

11.10.8

Foundry sand being spread as sub-base at STH 60 field site.

Foundry slag being compacted at STH 60

Recap

- What are the basic types of iron foundry sands that might be encountered in a reuse application: (a) green sand, (b) core sand, (c) no-bake sand, or (d) all of the above?
- True or false: bentonite is added to sand to make "green" sand cohesive.
- True or false: Sand is bonded using polymeric adhesives to create cores.
- Foundry sand is discarded because (a) the sand has the incorrect color, (b) excess sand accumulates at the foundry, or (c) the sand contains gravel?

Ŵ

Infrastructure Applications

- Subbase and working platforms for roadways and paved areas
- Retaining wall backfill, embankment fill, and structural fill
- HMA and CLSM fine aggregate
- Pond liner (e.g., runoff)

Participant Experience

Check if you have designed or constructed the following:

- Roadway
- Structural fill
- Retaining wall
- Embankment

Participant Experience

Check if you have used foundry sand in the following:

- Roadway construction
- Structural fill
- Retaining walls
- Embankments
- Top soil applications

Subbase Applications

- California bearing ratio (CBR)
- Resilient modulus
- Objective: provide designers with typical engineering properties for foundry sands that can be used in preliminary design.

Conventional Wall

MSE Wall

Index and Compaction Characteristics

Particle Characteristics:

- Fine Sand
- Fines (finer than 75 micron): $\sim 10 12\%$
- 2 μicron clay: ~ 3 to 10%
- Roundness: surrounded to subangular (R = 0.5 to 0.7)
- Specific gravity (G_s): 2.52 to 2.73 (base sand = 2.66)

Index Characteristics

- Plasticity: Plasticity index (PI) between non-plastic (NP) and 5
- Unified soil classification: clayey sand (SC), poorly graded sand (SP), silty sand (SM), or SP-SM
- AASHTO classification: A-2-4 or A-3
- Roundness: Subrounded to subangular (R = 0.5 to 0.7)

Compaction Curves

Water Content (%)

Dry Unit Weight (kN/m³)

Recap – Applications & Characteristics

- Foundry sands can be used in lieu of virgin materials in the following applications: (a) roadway subbase, (b) retaining wall backfill, (c) flowable fill (CLSM), or (d) all of the above.
- What is the primary characteristic that varies between foundry sands: (a) sand roundness, (b) fines and clay content, or (c) color?
- True or False: compaction curves for foundry sands appear very different than those for soils.

Engineering Properties of Interest

- Geotechnical properties
 - strength (retaining structure backfill, embankment)
 - compressibility & stiffness (embankment, subbase)
 - interaction with geosynthetic materials
 - hydraulic conductivity (water retention liner)
- Interactions with binders (HMA, CSLM)

Pavement Applications - Subbase

- California bearing ratio (CBR) measure of bearing strength of unbound pavement materials (subgrade, subbase, or base).
- Resilient modulus stiffness of unbound or bound pavement material that accounts for effect of long-term cyclic pavement loads

Modern mechanistic pavement design employs resilient modulus. However, CBR is still used in lower volume roadway designs.

Resilient Modulus Test

CBR of Foundry Sands

ESS #	Penetration Curve Type	P ₂₀₀	PI	Max CBR
1	Brittle	10.7	NP	40
2	Ductile	12.7	3	8.7
3	Brittle	4.3	NP	10
4	Brittle	1.1	NP	18
5	Ductile	14.3	1	19
6	Ductile	11.3	2	22
7	Brittle	2.7	NP	10
8	Ductile	12.1	8	27
9	Ductile	13.2	4	28
10	Ductile	12.4	5	4.3
11	Ductile	10.2	3	8.1
12	Ductile	16.4	6	16
13	Ductile	13.2	3	32
14	Brittle	10.0	NP	33
Reference Base				80
Reference Subbase				17

 Higher CBR obtained with a greater fraction of non-plastic fines.

- Plastic fines reduce CBR
- Higher CBR at optimum water content and with greater density.

Estimating CBR of Foundry Sands Non-Plastic (NP) Sands: $CBR = -361 + 32.4 M_{od} - 1.93P_{200} -$ 264R Plastic Sands (Pl > 0): $CBR = -7.6 \%_{d} + 4.25 BC + 178R$

 \mathcal{Y}_{o_d} is dry density in kN/m³, P₂₀₀ is fines content in %, R is Krumbein roundness, BC = bentonite content (%)

Resilient Modulus: BC < 6%

 Many foundry sands have modulus falling between conventional subbase and base.

Resilient Modulus: BC > 6%

 More plastic foundry sands (higher bentonite bentonite content) have lower modulus

Effect of Compaction Condition: BC < 6%

Sands with BC < 6% can be compacted over a range of water contents.

Effect of Compaction Condition: BC > 6%

Plastic sands should be compacted near optimum water content.

Recap - Pavement Applications

- Can foundry sands have comparable strength and stiffness as conventional subbase and base materials?
- True or False: Foundry sands with fines and higher plasticity (more bentonite) have greater bearing strength and modulus.
- To achieve adequate bearing strength and stiffness, foundry sands should be compacted: (a) dry of optimum water content, (b) at optimum water content, or (c) wet of optimum water content?

Retaining Structure Backfill, Structural Fill, Embankment Fill

- Shear strength of foundry sands
- Interface shear strengths with geomembrane, woven geotextile, and geogrid
- Pullout with geotextile and geogrid

Direct Shear Strength of Foundry Sands

Textured Geomembrane

Mirafi Geogrid

Belton 113 Geotextile

The second s

Large-Scale (D 5321) Direct Shear Machine

Interface Direct Shear Box (300 mm x 300 mm)

Frictional Efficiencies

<u>Geotextile:</u> Base Sand - 83% Foundry Sands - 61 to 74%

<u>Geogrid:</u> Base Sand - 96% Foundry Sands - 51 to 71%

> E(%) = tan≏/tan x' x 100

Retaining Wall and Structural Fill Design Recommendations

- E = 55% (geogrid) or 65% (geotextile)
- C_i = 1 (low normal stresses)
- $C_i = 0.5$ (higher stresses)
- Compact near optimum water content.

Recap – Fill Applications

- True or False: the shear strength of foundry sands varies significantly between foundries.
- Frictional efficiencies between geosynthetics and foundry sands range between (a) 25-50%, (b) 50-75%, or (c) 75-100%.
- Foundry sands used for fill should be compacted (a) as dry as possible, (b) near optimum water content, or (c) 3% wet of optimum.

Hydraulic Conductivity

Hydraulic Conductivity

- Foundry sands will drain less effectively than conventional sands.
- Foundry sands with bentonite content < 6% preferred for better drainage.