# WiscLEACH<sup>©</sup> 2.0 Tutorial

### Department of Civil and Environmental Engineering Jackson State University

October 15, 2011

Software Website: http://wiscleach.engr.wisc.edu

<sup>©</sup>Jackson State University 2011

# WiscLEACH<sup>©</sup> 2.0

- A web-based computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications.
  - The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater (Li et al. 2006, 2011)
  - The application was designed to be computationally efficient and can be used without experience in numerical modeling.
- WiscLEACH is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  - Contact Information for Q & A: Dr. Lin Li (lin.li@jsums.edu), Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217-0168, US
  - Acknowledgement: Financial support for the development of WiscLEACH software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.
- Copyright (C) 2011. Developed by Dr. Lin Li at Jackson State University.

## Homepage of Web-based WiscLEACH<sup>©</sup> 2.0

Home Roadway Stabilization 🗸 Embankment/Structural Fill Applications 🖌 User Manual



A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

Acknowledgement: Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.

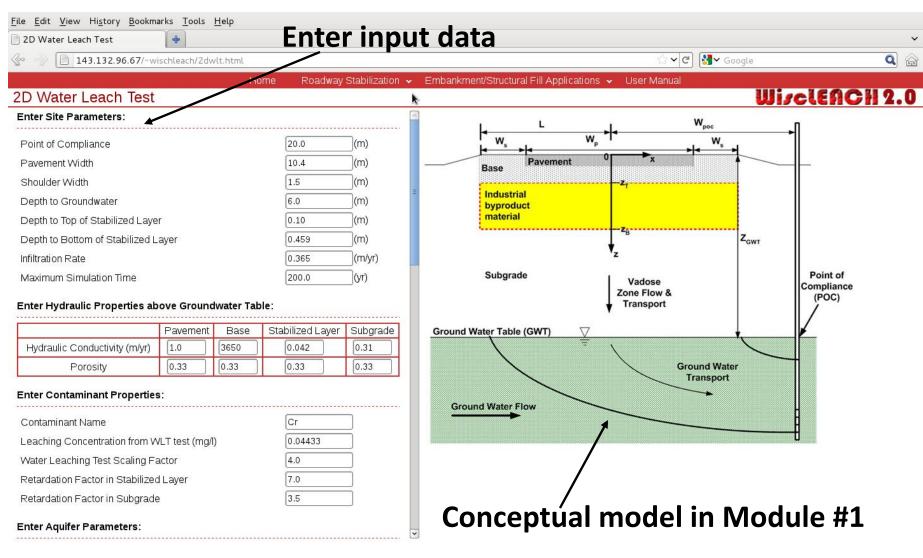
## **Structure of Web-based WiscLEACH<sup>©</sup> 2.0**

- There are nine modules for simulation scenarios:
  - Roadway stabilization
    - 2D Model
      - Water leach test
      - Column leach test adsorption control
      - Column leach test User defined pattern
    - 3D Model
      - Water leach test
      - Column leach test adsorption control
      - Column leach test User defined pattern
  - Embankment/Structural Fill Application
    - 3D Model
      - Water leach test
      - Column leach test adsorption control
      - Column leach test User defined pattern

### Module #1: Roadway Stabilization (2D model) -Water Leach Test

 Select the menu/Roadway
 Stabilization/2D
 Model/Water
 Leach Test




A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.



## **Data Input Windows for Module #1**

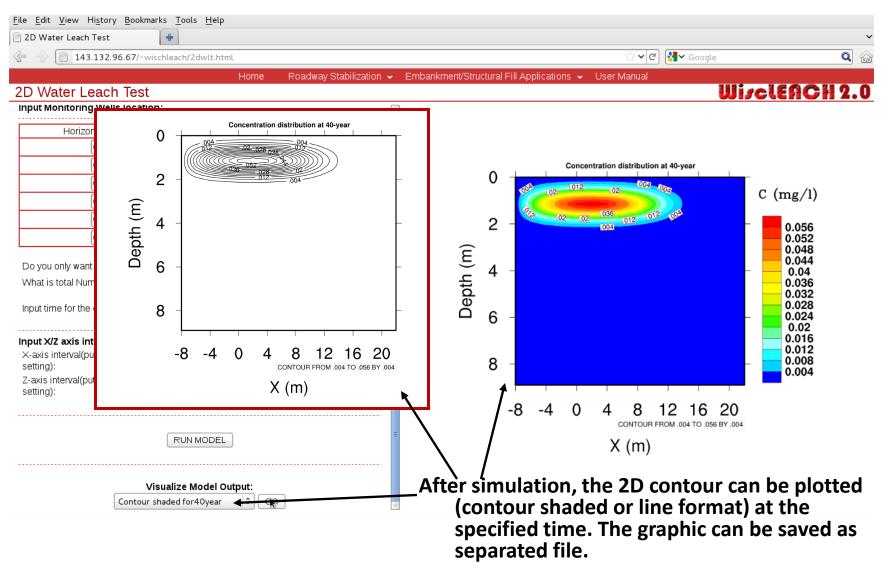
| <u>File E</u> dit <u>V</u> iew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp |                   |                                                    |
|-------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|
| 📄 2D Water Leach Test 🛛 🕀                                                           |                   | ~                                                  |
| Se Se 143.132.96.67/~wischleach/2dwlt.html                                          |                   | ☆ ✔ ♂ Google 🔍 🏠                                   |
| Home Roadway Sta                                                                    | abilization 🗸 Emb | ankment/Structural Fill Applications 🗸 User Manual |
| 2D Water Leach Test                                                                 | k                 | Wi/cleach 2.0                                      |
| Enter Site Parameters:                                                              |                   |                                                    |
| Point of Compliance 20.0                                                            | (m)               | Enter geometric variables, including               |
| Pavement Width 10.4 (                                                               | (m)               | point of compliance, pavement width,               |
| Shoulder Width 1.5                                                                  | (m)               |                                                    |
| Depth to Groundwater                                                                | (m)               | should width, depth to groundwater                 |
| , ,                                                                                 | [m)               | table, depth to top of stabilized layer,           |
|                                                                                     | (m)               |                                                    |
|                                                                                     | (m/yr)            | depth to bottom of stabilized layer.               |
| Maximum Simulation Time                                                             | ýr)               |                                                    |
| Enter Hydraulic Properties above Groundwater Table:                                 | •                 | Enter precipitation and simulation time.           |
| Pavement Base Stabilized Layer S                                                    | ubgrade           | Enter hudue die nueventiee of levens               |
| Hydraulic Conductivity (m/yr) 1.0 3650 0.042 0                                      | 0.31              | Enter hydraulic properties of layers               |
| Porosity 0.33 0.33 0.33 (                                                           | 0.33              | above the groundwater table.                       |
| Enter Contaminant Properties:                                                       |                   |                                                    |
| Contaminant Name                                                                    | •                 | For water leach test, enter contaminant            |
| Leaching Concentration from WLT test (mg/l)                                         |                   | name and leaching concentration from               |
| Water Leaching Test Scaling Factor 4.0                                              |                   | -                                                  |
| Retardation Factor in Stabilized Layer 7.0                                          |                   | WLT test. Enter WLT scaling factor,                |
| Retardation Factor in Subgrade 3.5                                                  |                   | retardation factor in stabilized layer and         |
| Enter Aquifer Parameters:                                                           | ~                 | in subgrade.                                       |
|                                                                                     |                   | in subgraue.                                       |

## Data Input Windows for Module #1 (Cont')

| ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp |                            |                                                         |
|---------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|
| 2D Water Leach Test 😽                                                                       |                            |                                                         |
| 8 143.132.96.67/~wischleach/2dwlt.html                                                      |                            | ි 🗸 🥑 🚷 Google                                          |
| 8088                                                                                        | me Roadway Stabilization 😽 | Embankment/Structural Fill Applications 🐱 User Manual   |
| 2D Water Leach Test                                                                         |                            | Wircleach                                               |
| Enter Aquifer Parameters:                                                                   |                            |                                                         |
| Saturated Hydraulic Conductivity of Aquifer                                                 | 3650 (m/yr)                | <ul> <li>Enter aquifer properties.</li> </ul>           |
| Porosity of Aquifer                                                                         | 0.3                        |                                                         |
| Regional Hydraulic Gradient                                                                 | 1e-3                       | <ul> <li>Additional options for Expert Model</li> </ul> |
| Enter Expert Mode Parameters (Non-Default Built ir                                          | ):                         | Parameters: grid size, time step,                       |
| Use Expert Mode?                                                                            | ●Yes ○No                   | dispersivity and diffusion coefficient                  |
| Grid×                                                                                       | 2.0 (m)                    | dispersivity and diffusion coefficient.                 |
| Grid Z                                                                                      | 0.1 (m)                    | <ul> <li>Select output at the Point of</li> </ul>       |
| Time Step                                                                                   | 0.4 (yr)                   | Select output at the Point of                           |
| Horizontal Dispersivity above Groundwater                                                   | 0.0042 (m)                 | Compliance.                                             |
| Veritical Dispersivity above Groundwater                                                    | 0.042 (m)                  |                                                         |
| Horizontal Dispersivity in Groundwater                                                      | (m)                        | <ul> <li>Select concentrations are to be</li> </ul>     |
| Veritical Dispersivity in Groundwater                                                       | 3.18e-2 (m)                |                                                         |
| Molecular Diffusion Coefficient                                                             | 0.004 (m <sup>2</sup> /yr) | reported at monitoring well locations.                  |
| Enter Output Parameters:                                                                    |                            | Enter coordinates of these locations.                   |
| Do you want to get Max C at POC over time?                                                  | ●Yes ONo                   | The coordinates are defined based on                    |
| Do you want to get concentration at monitoring points?                                      |                            | The coordinates are defined based on                    |
| What is Monitoring Wells Numbers (maximum 6)?                                               | 6                          | the coordinate system shown in                          |
| Input Monitoring Wells location:                                                            |                            | conceptual model.                                       |
| Horizontal location (m)                                                                     | Vertical location (m)      | conceptual model.                                       |
|                                                                                             | ·                          |                                                         |

## Data Input Windows for Module #1 (Cont')

| <u>File Edit View History Bookmarks Tools Help</u>                                                                            |                                          |                                                                                                   |            |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|------------|
| 📄 2D Water Leach Test                                                                                                         |                                          |                                                                                                   | ~          |
| 🕼 📎 📄 143.132.96.67/~wischleach/2dwlt.htm                                                                                     | nl                                       | ☆ ✔ ♂ Google                                                                                      | <b>Q</b> 🏠 |
|                                                                                                                               | Home 💦 Roadway Stabilization 🐱           | Embankment/Structural Fill Applications 🖌 User Manual                                             |            |
| 2D Water Leach Test                                                                                                           |                                          | Wijcleach                                                                                         | 2.0        |
| What is Monitoring Wells Numbers (maximum 6)?                                                                                 |                                          | • Enter coordinates of monitoring well                                                            |            |
| Horizontal location (m)                                                                                                       | Vertical location (m)                    | locations (maximum locations = 6).                                                                |            |
| 0.0                                                                                                                           | 0.55                                     |                                                                                                   |            |
| 0.0                                                                                                                           | 1.0                                      |                                                                                                   |            |
| 0.0                                                                                                                           | 2.0                                      | • Coloct if 2D contour groups are desired                                                         | _          |
| 0.0                                                                                                                           | 3.0                                      | <ul> <li>Select if 2D contour graphs are desire</li> </ul>                                        | α,         |
| 0.0                                                                                                                           | 4.0                                      | and enter times when contours are to                                                              | •          |
| 0.0                                                                                                                           | 5.0                                      |                                                                                                   | ,          |
| Do you only want to get 2D contour?<br>What is total Number of Contour Plots (maximum<br>Input time for the contour plot (yr) | •Yes ONo     4     1     5     20     40 | be output. (maximum contour = 4)<br>Note: contouring can require<br>considerable processing time. |            |
| Input X/Z axis intervals:<br>X-axis interval(put a comparable interval with mod                                               |                                          | Enter the axis intervals for the contou                                                           | r          |
| setting):                                                                                                                     | 4 (m)                                    |                                                                                                   | I          |
| Z-axis interval(put a comparable interval with moc<br>setting):                                                               | iel 2(m)                                 | graph axis.                                                                                       |            |
| RUN MODEL                                                                                                                     | +                                        | Click it to mup the Wisel FACL medal                                                              |            |
|                                                                                                                               |                                          | Click it to run the WiscLEACH model                                                               |            |


## Webpage to Running WiscLEACH Module #1

| File Edit View History Bookmarks Tools Help                       | WiscLEACH is ru            | nning in the web browser                  | . The results are c       | alculated.          |
|-------------------------------------------------------------------|----------------------------|-------------------------------------------|---------------------------|---------------------|
| © 143.132.96.67/~wischleach/2dwlt.html                            | 1                          |                                           | 🗇 🗸 🔀 Google              | Q                   |
| Hon                                                               | ne Rradway Stabilization 🗸 | Embankment/Structural Fill Applications 👻 |                           |                     |
| 2D Water Leach Test                                               |                            | 2                                         |                           | Ji/clEACH 2.0       |
| Enter Site Parameters:                                            |                            |                                           | W <sub>poc</sub>          | .0                  |
| Point of Compliance                                               | 20.0 (m)                   |                                           | W <sub>5</sub>            |                     |
| Pavement Width                                                    | 10.4 (m)                   | Base Pavement 0                           |                           |                     |
| Shoulder Width                                                    | 1.5 (m)                    |                                           |                           |                     |
| Depth to Groundwater                                              | 6.0 (m)                    | Industrial byproduct                      |                           |                     |
| Depth to Top of Stabilized Layer                                  | 0.10 (m)                   | material                                  |                           |                     |
| Depth to Bottom of Stabilized Layer                               | 0.459 (m)                  | ·z                                        | в Z <sub>GWT</sub>        |                     |
| Infiltration Rate                                                 | 0.365 (m/yr)               | ₹,                                        |                           |                     |
| Maximum Simulation Time                                           | 200.0 (yr)                 | Subgrade                                  | Vadose                    | Point of            |
|                                                                   |                            | Zo                                        | one Flow &                | Compliance<br>(POC) |
| Enter Hydraulic Properties above Groundwater fable                | e:                         | *                                         | Transport                 | 1                   |
| Pavement Stabilized                                               | Layer Subgrade             | Ground Water Table (GWT)                  |                           |                     |
| Hydraulic Conductivity (m/yr) 1.0 1.0                             | 0.042 0.31                 |                                           |                           |                     |
| Porosity 0.33 0.33                                                | 0.33 0.33                  |                                           | Ground Water<br>Transport |                     |
| Enter Contaminant Properties:                                     |                            | Ground Water Flow                         | Hansport                  |                     |
| Contaminant Name                                                  | Cr                         |                                           |                           | 8                   |
| Leaching Concentration from WLT test (mg/l)                       | 0.04433                    |                                           |                           | H                   |
| Water Leaching Test Scaling Factor                                | 4.0                        |                                           |                           |                     |
| Retardation Factor in Stabilized Layer                            | 7.0                        |                                           |                           |                     |
| Retardation Factor in Subgrade                                    | 3.5                        |                                           |                           |                     |
|                                                                   |                            |                                           |                           |                     |
| Enter Aquifer Parameters:<br>Transferring data from 143.132.96.67 |                            | 3                                         |                           |                     |
| Transferring data from 145.152.50.07                              |                            |                                           |                           |                     |

| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u>                                                        | <u>C</u> ools <u>H</u> elp                   |                                                            |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|---------------------|
| 🖹 2D Water Leach Test 🛛 🐣                                                                                                                 |                                              |                                                            | ~                   |
| 6 143.132.96.67/~wischlead                                                                                                                | ch/2dwlt.html                                | ☆ ✔ C Google                                               | <b>Q</b> 🙀          |
|                                                                                                                                           | Home Roadway Stabilizati                     | on 👻 Embankment/Structural Fill Applications 👻 User Manual |                     |
| 2D Water Leach Test                                                                                                                       |                                              | Wirc                                                       | LEACH 2.0           |
| Input Monitoring Wells location:                                                                                                          |                                              |                                                            |                     |
| Horizontal location (m)                                                                                                                   | Vertical location (m)                        |                                                            |                     |
| 0.0                                                                                                                                       | 0.55                                         |                                                            | _                   |
| 0.0                                                                                                                                       | 1.0                                          | Base                                                       |                     |
| 0.0                                                                                                                                       | 2.0                                          | Industrial                                                 |                     |
| 0.0                                                                                                                                       | 3.0                                          | byproduct material                                         |                     |
| 0.0                                                                                                                                       | 4.0                                          |                                                            |                     |
| 0.0                                                                                                                                       | 5.0                                          | vz Gwi                                                     |                     |
| Do you only want to get 2D contour?<br>What is total Number of Contour Plots<br>Input time for the contour plot (yr)                      | (maximum 4)?     4     1     5     20     40 | Ground Water Table (GWT)                                   | Compliance<br>(POC) |
| Input X/Z axis intervals:<br>X-axis interval(put a comparable interv<br>setting):<br>Z-axis interval(put a comparable interv<br>setting): | (III)                                        | Ground Water<br>Transport<br>Ground Water Flow             |                     |
| R                                                                                                                                         |                                              | =                                                          |                     |
| Visualiz                                                                                                                                  | ze Model Output:                             | After simulation, the results                              |                     |
| Choose 1 graph                                                                                                                            | to display 🗘 GO                              | AILEI SIIIIUIALIOII, LIE TESUILS                           |                     |
|                                                                                                                                           |                                              | —— allowed to graphically out                              | tput.               |

| <u>File Edit View History Bookmarks Tools</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>H</u> elp                 |                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------|
| 📄 2D Water Leach Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                           |
| 143.132.96.67/~wischleach/2d     143.132.96.67/~wischleach | wlt.html                     | ි マ අ ි Soogle 🔍 🏠                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Home Roadway Stabilization 🗸 |                                                                                 |
| 2D Water Leach Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | Wircleach 2.0                                                                   |
| Input Monitoring Wells location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                                 |
| Horizontal location (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vertical location (m)        |                                                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.55                         |                                                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                          |                                                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                          |                                                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0                          |                                                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                          | ੱਚ 0.08 –                                                                       |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.0                          |                                                                                 |
| Do you only want to get 2D contour?<br>What is total Number of Contour Plots (max<br>Input time for the contour plot (yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (imum 4)?     (              | Effluent Concentration (mg/)                                                    |
| Input X/Z axis intervals:<br>X-axis interval(put a comparable interval wi<br>setting):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 (11)                       | 0.00                                                                            |
| Z-axis interval(put a comparable interval wi<br>setting):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | th Model 2(m)                | 0 30 60 90 120 150 180<br>Time (yr)                                             |
| RUNM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IODEL                        |                                                                                 |
| Visualize Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | odel Output:                 | After simulation, the concentrations at the monitoring locations are allowed to |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | graphically output. The graphic can be saved as separated file.                 |

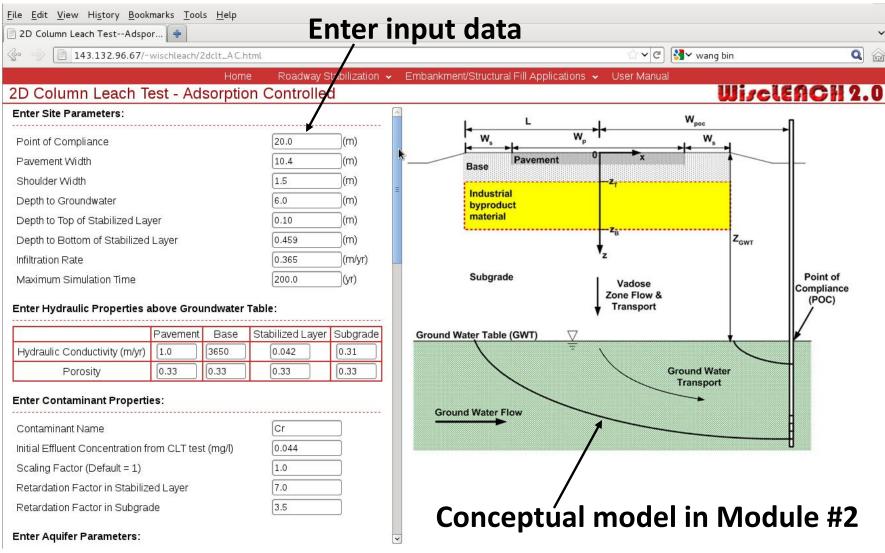
| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools                                                                                                                                                                                                | <u>H</u> elp               |                                                                                                                                                             |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 📄 2D Water Leach Test 🛛 🕀                                                                                                                                                                                                                                                              |                            |                                                                                                                                                             | ~  |
| @ 🛞 📄 143.132.96.67/~wischleach/2dw                                                                                                                                                                                                                                                    | /lt.html                   | ් 🗸 📿 🖓 Google 🛛 🔾                                                                                                                                          | 6  |
|                                                                                                                                                                                                                                                                                        | Home Roadway Stabilization |                                                                                                                                                             |    |
| 2D Water Leach Test                                                                                                                                                                                                                                                                    |                            | Wircleach 2                                                                                                                                                 | .0 |
| Input Monitoring Wells location:                                                                                                                                                                                                                                                       |                            |                                                                                                                                                             |    |
| Horizontal location (m)                                                                                                                                                                                                                                                                | Vertical location (m)      |                                                                                                                                                             |    |
| 0.0                                                                                                                                                                                                                                                                                    | 0.55                       | о <sub>Т</sub>                                                                                                                                              |    |
| 0.0                                                                                                                                                                                                                                                                                    | 1.0                        |                                                                                                                                                             |    |
| 0.0                                                                                                                                                                                                                                                                                    | 2.0                        |                                                                                                                                                             |    |
| 0.0                                                                                                                                                                                                                                                                                    | 3.0                        |                                                                                                                                                             |    |
| 0.0                                                                                                                                                                                                                                                                                    | 4.0                        | S                                                                                                                                                           |    |
| 0.0                                                                                                                                                                                                                                                                                    | 5.0                        | te 4 -                                                                                                                                                      |    |
| Do you only want to get 2D contour?<br>What is total Number of Contour Plots (maxin<br>Input time for the contour plot (yr)<br>Input X/Z axis intervals:<br>X-axis interval(put a comparable interval with<br>setting):<br>Z-axis interval(put a comparable interval with<br>setting): | 1 5<br>20 40               | (L) 2                                                                                                                                                       |    |
| RUN MC<br>Visualize Moo<br>max Conc                                                                                                                                                                                                                                                    | <br>                       | After simulation, the maximum concentrations<br>at the POC during the maximum simulation<br>time are plotted. The figure can be saved as<br>separated file. |    |



### Module #2: Roadway Stabilization (2D model) -Column Leach Test – Adsorption Controlled

 Select the menu/Roadway Stabilization/2D Model/Column Leach Test – Adsorption Controlled




A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.



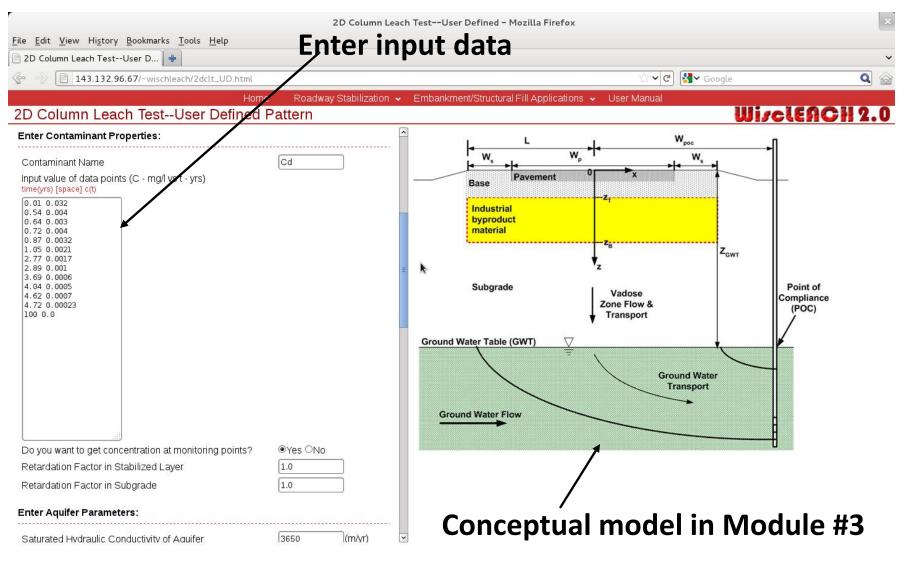
## **Data Input Windows for Module #2**

| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp |                                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 📄 2D Column Leach TestAdspor 🚸                                                                       | · · · · · · · · · · · · · · · · · · ·                    |
| 🚱 沙 📄 143.132.96.67/~wischleach/2dclt_AC.html                                                        | 🖓 🗸 🖉 🚼 🗸 wang bin 🔍 🙆                                   |
|                                                                                                      | 🗸 Embankment/Structural Fill Applications 👻 User Manual  |
| 2D Column Leach Test - Adsorption Controlled                                                         | Wi/clEACH 2.0                                            |
| Enter Site Parameters:                                                                               |                                                          |
| Point of Compliance [20.0](m)                                                                        |                                                          |
| Pavement Width 10.4 (m)                                                                              | *.                                                       |
| Shoulder Width 1.5 (m)                                                                               |                                                          |
| Depth to Groundwater 6.0 (m)                                                                         |                                                          |
| Depth to Top of Stabilized Layer 0.10 (m)                                                            |                                                          |
| Depth to Bottom of Stabilized Layer 0.459 (m)                                                        | • Data input and similar to Madula #1                    |
| Infiltration Rate 0.365 (m/yr)                                                                       | <ul> <li>Date input are similar to Module #1,</li> </ul> |
| Maximum Simulation Time 200.0 (yr)                                                                   | except:                                                  |
| Enter Hydraulic Properties above Groundwater Table:                                                  | <ul> <li>For column leach test – adsorption</li> </ul>   |
| Pavement Base Stabilized Layer Subgrade                                                              |                                                          |
| Hydraulic Conductivity (m/yr)         1.0         3650         0.042         0.31                    | controlled module, enter column leaching                 |
| Porosity 0.33 0.33 0.33                                                                              | data where adsorption-controlled release                 |
| Enter Contaminant Properties:                                                                        | can be assumed with instantaneous linear                 |
| Contaminant Name                                                                                     | and reversible sorption.                                 |
| Initial Effluent Concentration from CLT test (mg/l)                                                  |                                                          |
| Scaling Factor (Default = 1)                                                                         |                                                          |
| Retardation Factor in Stabilized Layer 7.0                                                           |                                                          |
| Retardation Factor in Subgrade 3.5                                                                   |                                                          |
| Enter Aquifer Parameters:                                                                            |                                                          |

### Module #3: Roadway Stabilization (2D model) -Column Leach Test – User Defined Pattern

 Select the menu/Roadway Stabilization/2D Model/Column Leach Test – User Defined Pattern




A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.



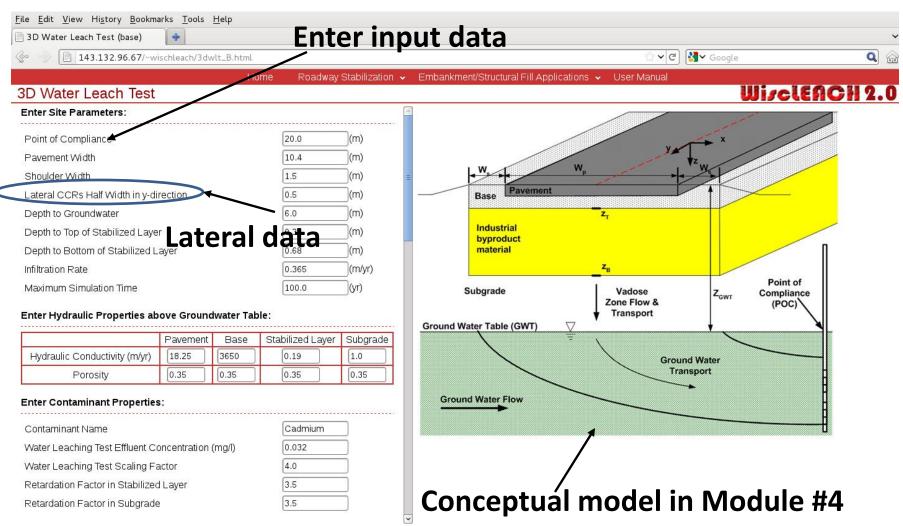
## **Data Input Windows for Module #3**

| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2D Column Lea          | ch TestUser Defined – Mozilla Firefox                                                                                                                                                            | ×  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <u>File Edit View History Bookmarks Tools Help</u>                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                                                                                                                  |    |
| 2D Column Leach TestUser D                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                                                                                                                                                  | ~  |
| 143.132.96.67/~wischleach/2dclt_UD.html                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 순 🗸 🥑 🚼 🗸 Google 🛛                                                                                                                                                                               |    |
| Hom<br>2D Column Leach TestUser Defined                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | Embankment/Structural Fill Applications      User Manual     Uirclench2                                                                                                                          | .0 |
| Enter Contaminant Properties:<br>Contaminant Name<br>Input value of data points (C - mg/l vs t - yrs)<br>time(yrs) [space] c(t)<br>0.01 0.032<br>0.54 0.003<br>0.72 0.004<br>0.67 0.0032<br>1.05 0.0021<br>2.77 0.0017<br>2.89 0.001<br>3.69 0.0006<br>4.04 0.0005<br>4.62 0.0007<br>4.72 0.00023<br>100 0.0<br>Do you want to get concentration at monitoring points?<br>Retardation Factor in Stabilized Layer<br>Retardation Factor in Subgrade<br>Enter Aquifer Parameters: | ©Yes ONo<br>1.0<br>1.0 | <ul> <li>Date input are similar to Module #1, except:         <ul> <li>For column leach test – user defined patter module, enter leachate concentrations at various time.</li> </ul> </li> </ul> | n  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                  |    |
| Saturated Hvdraulic Conductivity of Aduifer                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3650 (m/yr)            | ž                                                                                                                                                                                                |    |

## Module #4: Roadway Stabilization (3D model) -Water Leach Test

 Select the menu/Roadway
 Stabilization/3D
 Model/Water
 Leach Test

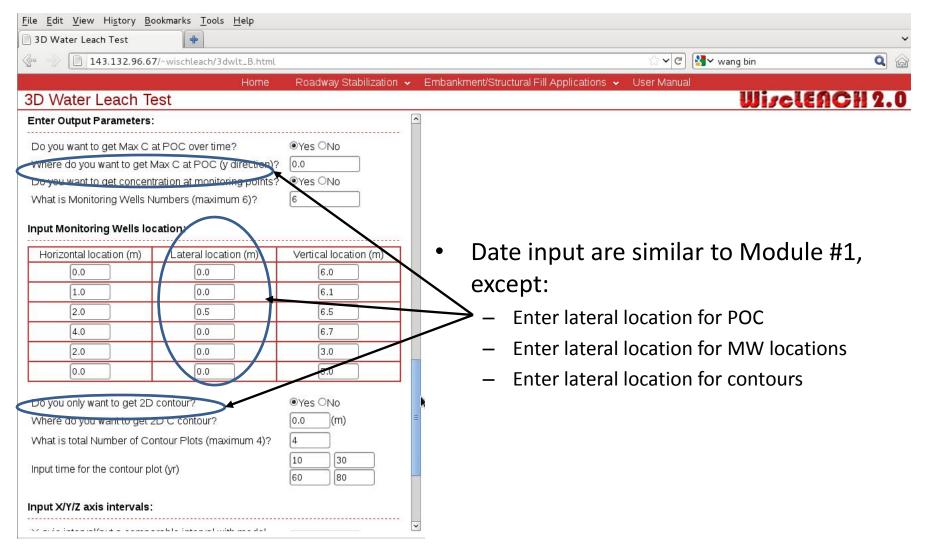


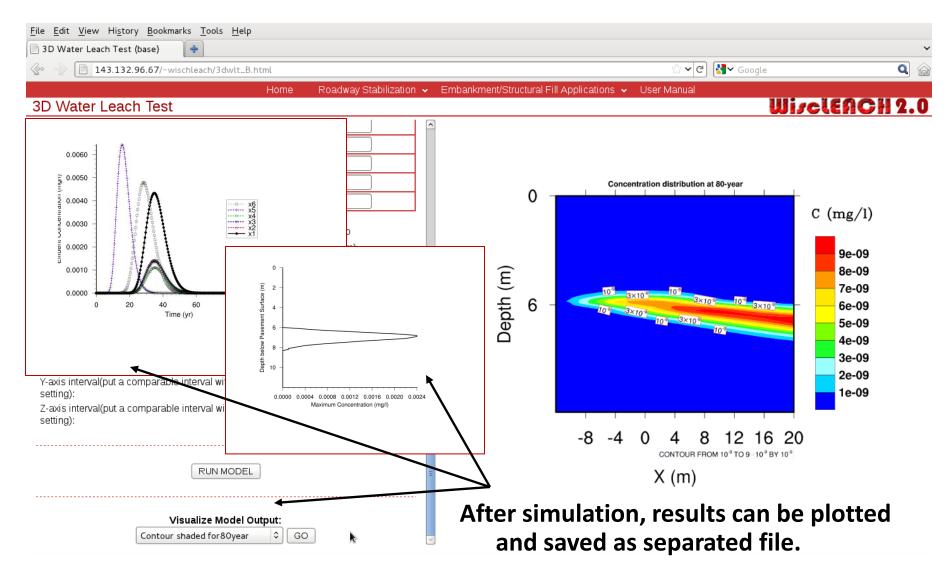

A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US


**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.




## Data Input Windows for Module #4 (Cont')

| <u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp |                     |                                                                |                 |
|----------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|-----------------|
| 📄 3D Water Leach Test (base) 🛛 💠                                                             |                     |                                                                | Ý               |
| 🚱 📎 📄 143.132.96.67/~wischleach/3dwlt_B.html                                                 |                     | 🗇 🗸 🕑 🚼 🗸 Google                                               | <b>Q</b>        |
| H                                                                                            | ome Roadway Stabili | zation 👻 Embankment/Structural Fill Applications 🗸 User Manual |                 |
| 3D Water Leach Test                                                                          |                     | Wircl                                                          | <u>EACH 2.0</u> |
| Enter Contaminant Properties:                                                                |                     |                                                                |                 |
| Contaminant Name                                                                             | Cadmium             |                                                                |                 |
| Water Leaching Test Effluent Concentration (mg/l)                                            | 0.032               |                                                                |                 |
| Water Leaching Test Scaling Factor                                                           | 4.0                 |                                                                |                 |
| Retardation Factor in Stabilized Layer                                                       | 3.5                 |                                                                |                 |
| Retardation Factor in Subgrade                                                               | 3.5                 |                                                                |                 |
| Enter Aquifer Parameters:                                                                    |                     | Date input are similar to Module                               | e #1,           |
| Saturated Hydraulic Conductivity of Aquifer                                                  | [3650 ](m/y         |                                                                | ,               |
| Porosity of Aquifer                                                                          | 0.3                 | except                                                         |                 |
| Regional Hydraulic Gradient                                                                  | [1e-3               | <ul> <li>Enter lateral grid space.</li> </ul>                  |                 |
| Enter Expert Mode Parameters (Non-Default Built i                                            | n):                 | <ul> <li>Enter lateral dispersivity.</li> </ul>                |                 |
| Use Expert Mode?                                                                             | erres ONo           |                                                                |                 |
| Grid X                                                                                       | 2.0 (m)             |                                                                |                 |
| Grid Y                                                                                       | 0.5 (m)             |                                                                |                 |
| Grid Z                                                                                       | 0.1 (m)             |                                                                |                 |
| Time Step                                                                                    | 0.4 (yr)            |                                                                |                 |
| Horizontal Dispersivity above Groundwater                                                    | 6e-3 (m)            |                                                                |                 |
| Lateral Dispersivity above Groundwater                                                       | 6e-3 (m)            |                                                                |                 |
| Veritical Dispersivity above Groundwater                                                     | 6e-2 (m)            |                                                                |                 |
| Horizontal Dispersivity in Groundwater                                                       | 2.1e-2 (m)          |                                                                |                 |
| Laterial Dienersivity in Groundwater                                                         | ົາ 1e-2 ໄທໂ         |                                                                |                 |

## Data Input Windows for Module #4 (Cont')





## Module #5: Roadway Stabilization (3D model) -Column Leach Test – Adsorption Controlled

 Select the menu/Roadway Stabilization/3D Model/Column Leach Test – Adsorption Controlled



A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.

| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookma | arks <u>T</u> ools | <u>H</u> elp | _             | -                      |                                             |               |
|------------------------------------------------------------------------|--------------------|--------------|---------------|------------------------|---------------------------------------------|---------------|
| 📄 3D Column Leach Testabsorp                                           | . +                |              | En            | ter in                 | out data                                    | ~             |
|                                                                        | ischleach/3dc      | :lt_AC_B.ht  |               |                        | ☆ ✔ ♂ Google                                | Q @           |
|                                                                        |                    | H            | ome Road      | way Stabilization      |                                             |               |
| 3D Column Leach Te                                                     | st - Adso          | orption      | Controllec    |                        | WijcleA                                     | <b>CH 2.0</b> |
| Enter Site Parameters:                                                 |                    |              |               | $\boldsymbol{\lambda}$ |                                             | 1             |
| Point of Compliance                                                    |                    |              | 20.0          | (m)                    | X                                           | -             |
| Pavement Width                                                         |                    |              | 10.4          | (m)                    | YA YA                                       |               |
| Shoulder Width                                                         |                    |              | 1.5           | (m)                    |                                             |               |
| Lateral CCRs Half Width in y-di                                        | rection            |              | 0.5           | (m)                    | Base Pavement                               |               |
| Depth to Groundwater                                                   |                    |              | 6.0           | (m)                    | Z <sub>T</sub>                              |               |
| Depth to Top of Stabilized Laye                                        | r                  |              | 0.38          | (m)                    | Industrial byproduct                        |               |
| Depth to Bottom of Stabilized L                                        | .ayer              |              | 0.68          | (m)                    | material                                    | 1             |
| Infiltration Rate                                                      |                    |              | 0.365         | (m/yr)                 | Z <sub>B</sub>                              |               |
| Maximum Simulation Time                                                |                    |              | 100.0         | (yr)                   | Subgrade Vadose Z <sub>GWT</sub> Compliance |               |
| Enter Hydraulie Brenertice ob                                          | OVO CROUDA         | durator Tal  |               |                        | Zone Flow & (POC)                           |               |
| Enter Hydraulic Properties ab                                          | ove Ground         | uwater fai   | Jie.          |                        | Ground Water Table (GWT)                    |               |
|                                                                        | Pavement           | Base         | Stabilized La |                        |                                             |               |
| Hydraulic Conductivity (m/yr)                                          | 18.25              | 3650         | 0.19          | 1.0                    | Ground Water                                |               |
| Porosity                                                               | 0.35               | 0.35         | 0.35          | 0.35                   | Transport                                   | A             |
| Enter Contaminant Properties                                           | s:                 |              |               |                        | Ground Water Flow                           |               |
| Contaminant Name                                                       |                    |              | Cadmium       | 1                      |                                             | 3             |
| Initial Effluent Concentration from                                    | m CLT test(n       | ng/l)        | 0.032         |                        |                                             |               |
| Scaling Factor (Default=1)                                             |                    |              | 1.0           |                        |                                             |               |
| Retardation Factor in Stabilized                                       | d Layer            |              | 3.5           |                        | Conceptual model in Madule 4                | 46            |
| Retardation Factor in Subgrade                                         | 9                  |              | 3.5           |                        | Conceptúal model in Module #                | łD            |

## **Data Input Windows for Module #5**

| <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookm |               | <u>H</u> elp |                  |                 |                                                        |
|----------------------------------------------------------|---------------|--------------|------------------|-----------------|--------------------------------------------------------|
| 3D Column Leach Testabsorp.                              | V 1           |              |                  |                 |                                                        |
|                                                          | ischleach/3do | clt_AC_B.ht  |                  |                 | ि 🗸 🖉 🖓 Google                                         |
|                                                          |               |              |                  | y Stabilization | mbankment/Structural Fill Applications 🖌 User Manual   |
| 3D Column Leach Te                                       | st - Adso     | orption      | Controlled       |                 | Wircleach                                              |
| Enter Site Parameters:                                   |               |              |                  |                 |                                                        |
| Point of Compliance                                      |               |              | 20.0             | (m)             |                                                        |
| Pavement Width                                           |               |              | 10.4             | (m)             |                                                        |
| Shoulder Width                                           |               |              | 1.5              | (m)             |                                                        |
| Lateral CCRs Half Width in y-di                          | rection       |              | 0.5              | (m)             |                                                        |
| Depth to Groundwater                                     |               |              | 6.0              | (m)             |                                                        |
| Depth to Top of Stabilized Laye                          | er            |              | 0.38             | (m)             | • Date input are similar to Module #4,                 |
| Depth to Bottom of Stabilized L                          | .ayer         |              | 0.68             | (m)             | Date input are similar to would $\pi^{-1}$ ,           |
| Infiltration Rate                                        |               |              | 0.365            | (m/yr)          | except:                                                |
| Maximum Simulation Time                                  |               |              | 100.0            | (yr)            | •                                                      |
| Enter Hydraulic Properties ab                            | ove Group     | dwater Tal   |                  |                 | <ul> <li>For column leach test – adsorption</li> </ul> |
|                                                          |               |              |                  |                 | controlled module, enter column leaching               |
|                                                          | Pavement      |              | Stabilized Layer |                 | data where adsorption-controlled release               |
| Hydraulic Conductivity (m/yr)                            | 18.25         | 3650         | 0.19             | 1.0             |                                                        |
| Porosity                                                 | 0.35          | 0.35         | 0.35             | 0.35            | can be assumed with instantaneous linear               |
| Enter Contaminant Properties                             | s:            |              |                  |                 | and reversible sorption.                               |
| Contaminant Name                                         |               |              | Cadmium          |                 |                                                        |
| Initial Effluent Concentration fro                       | m CLT test(n  | ng/l)        | 0.032            |                 |                                                        |
| Scaling Factor (Default=1)                               |               |              | 1.0              |                 |                                                        |
| Retardation Factor in Stabilized                         | d Layer       |              | 3.5              |                 |                                                        |
| Retardation Factor in Subgrade                           | 9             |              | 3.5              |                 |                                                        |

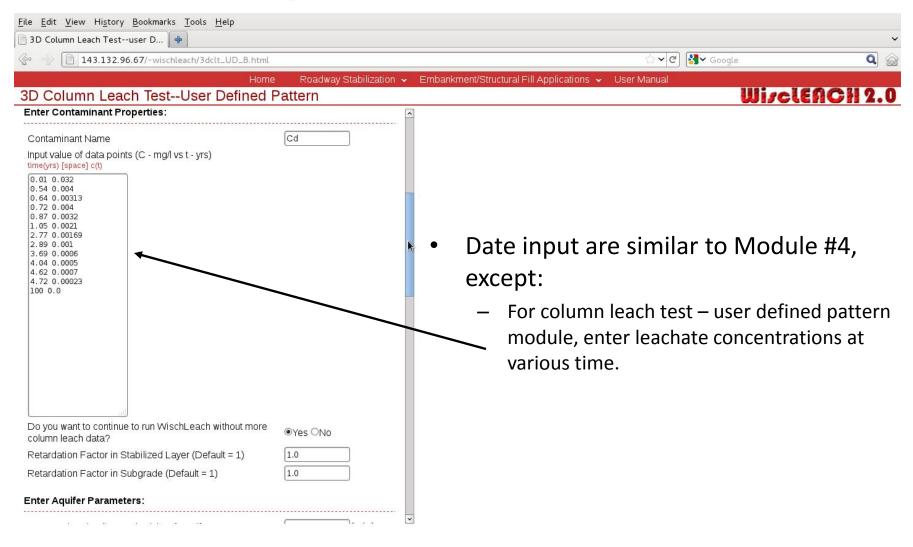
## Module #6: Roadway Stabilization (3D model) -Column Leach Test – User Defined Pattern

 Select the menu/Roadway
 Stabilization/3D
 Model/Column
 Leach Test –
 User Defined
 Pattern



A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

**Acknowledgement:** Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.

| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookm | arks <u>T</u> ools | <u>H</u> elp | Ente            | er inp          | out data                                           |                                       |                        |
|-----------------------------------------------------------------------|--------------------|--------------|-----------------|-----------------|----------------------------------------------------|---------------------------------------|------------------------|
| 3D Column Leach Testuser D.                                           |                    |              |                 |                 |                                                    |                                       |                        |
| 🚱 🌒 🔳 143.132.96.67/~w                                                | vischleach/3dd     | lt_UD_B.ht   | tml             |                 |                                                    | ් 🗸 🥑 🛃 🗸 Goog                        | gle 🔍 🖉                |
|                                                                       |                    | H            | ome Road va     | y Stabilization | <ul> <li>Embankment/Structural Fill App</li> </ul> | lications 🐱 User Manual               |                        |
| 3D Column Leach Te                                                    | stUser             | Define       | d Pattern       |                 |                                                    |                                       | Wircleach 2.0          |
| Enter Site Parameters:                                                |                    |              |                 |                 |                                                    |                                       |                        |
| Point of Compliance                                                   |                    |              | 12.7            | (m)             |                                                    | X                                     |                        |
| Pavement Width                                                        |                    |              | 10.4            | (m) <b>k</b>    |                                                    | A A A A A A A A A A A A A A A A A A A |                        |
| Shoulder Width                                                        |                    |              | 1.5             | (m)             | ■ <b>₩</b>                                         | We wat                                |                        |
| Lateral CCRs Half Width in y-direction 0.5                            |                    |              | 0.5             | (m)             | Base Pavement                                      |                                       |                        |
| Depth to Groundwater                                                  |                    |              | 5.0             | (m)             |                                                    | ZT                                    |                        |
| Depth to Top of Stabilized Layer                                      |                    |              |                 | (m)             | Industrial<br>byproduct                            |                                       |                        |
| Depth to Bottom of Stabilized Layer                                   |                    |              | 0.68            | (m)             | material                                           |                                       |                        |
| Infiltration Rate                                                     |                    |              | 0.042           | (m/yr)          |                                                    | z <sub>e</sub>                        |                        |
| Maximum Simulation Time                                               |                    |              | 100.0           | (yr)            | Subgrade                                           | Vadose Z <sub>GW</sub>                | Point of<br>Compliance |
| Enter Hydraulie Brenertice ak                                         | Croup              | durator Tal  |                 |                 |                                                    | Zone Flow & Transport                 | (POC)                  |
| Enter Hydraulic Properties at                                         | Sove Ground        | uwater Tai   | Jie.            |                 | Ground Water Table (GWT)                           |                                       |                        |
|                                                                       | Pavement           | Base         | Stabilized Laye |                 |                                                    | Ŧ                                     |                        |
| Hydraulic Conductivity (m/yr)                                         | 1.0                | 3650         | 0.3135          | 0.90            |                                                    | Ground Water<br>Transport             |                        |
| Porosity                                                              | 0.33               | 0.33         | 0.33            | 0.33            |                                                    | Transport                             | 1                      |
| Enter Contaminant Propertie                                           | s:                 |              |                 |                 | Ground Water Flow                                  |                                       | 1                      |
| Contaminant Name                                                      |                    |              | Cd              |                 |                                                    | 1                                     | ł                      |
| Input value of data points (C - m                                     | ng/l vs t - yrs)   |              |                 |                 |                                                    |                                       |                        |
| time(yrs) [space] c(t)                                                |                    |              |                 |                 |                                                    |                                       |                        |
| 0.54 0.004<br>0.64 0.00313                                            |                    |              |                 |                 |                                                    |                                       |                        |
| 0.72 0.004<br>0.87 0.0032                                             |                    |              |                 |                 | Conceptu                                           | al model in M                         | Iodule #6              |
| 1.05 0.0021                                                           |                    |              |                 |                 | V                                                  |                                       |                        |
|                                                                       |                    |              |                 |                 |                                                    |                                       |                        |

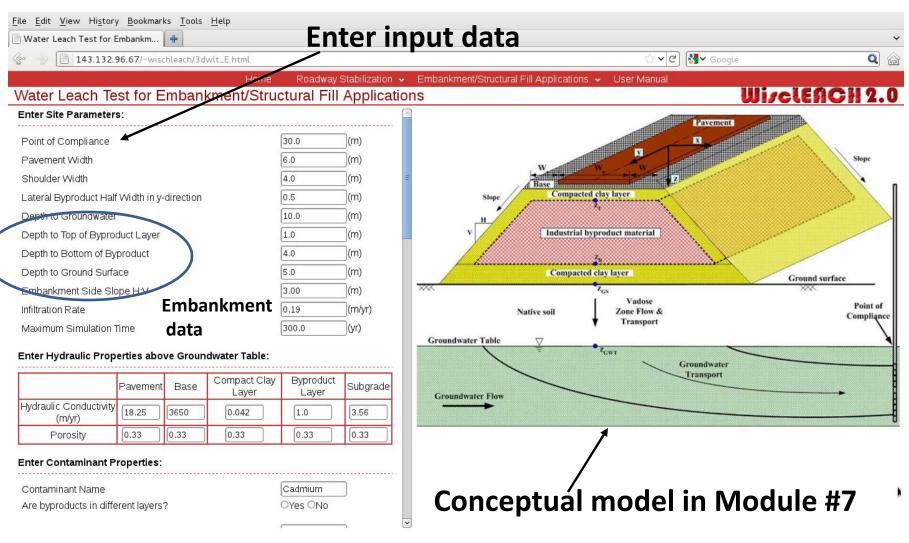
## **Data Input Windows for Module #6**



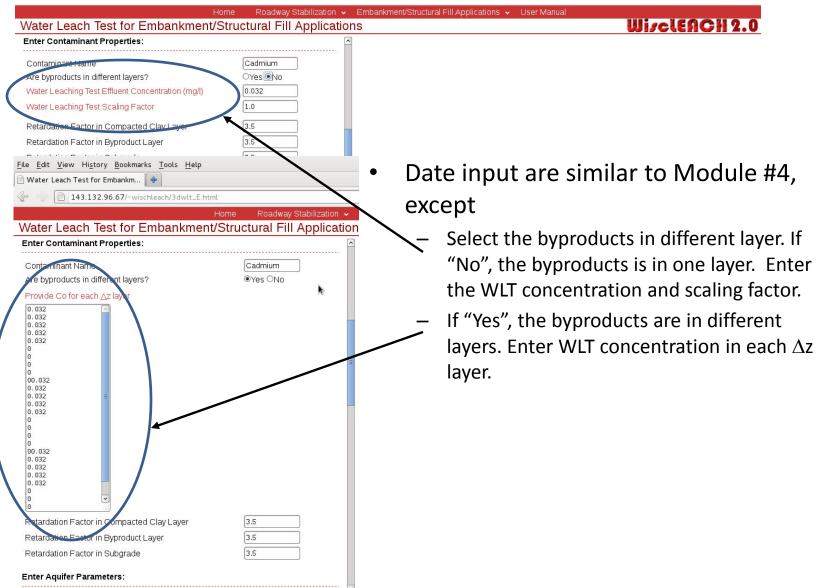
### Module #7: Embankment/Structural Fill Applications (3D model) - Water Leach Test



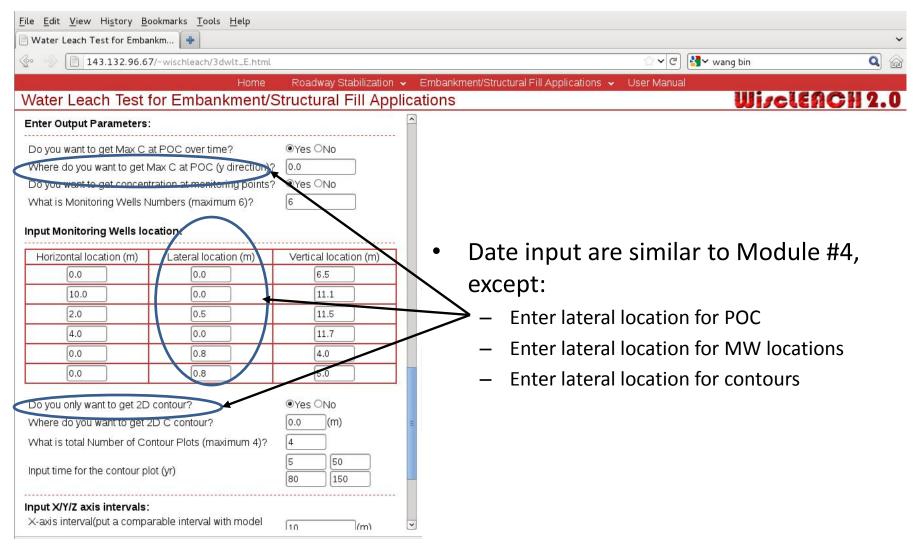
A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.

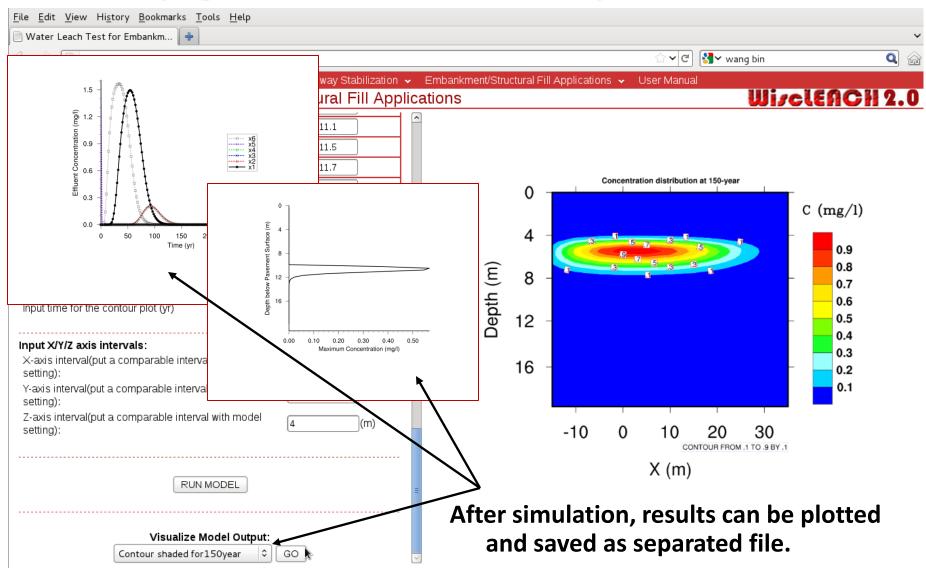

WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:


Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

Acknowledgement: Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.


 Select the menu/Embankment/Structural Fill Applications/3D Model/Water Leach Test




## Data Input Windows for Module #7 (Cont')



## Data Input Windows for Module #7 (Cont')

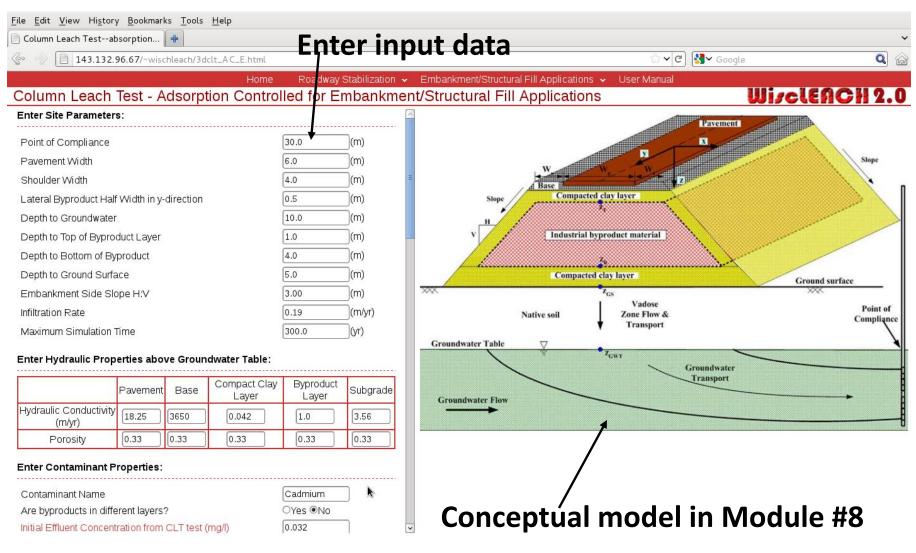




### Module #8: Embankment/Structural Fill Applications (3D model) - Adsorption Controlled



A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.


WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

Acknowledgement: Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.

• Select the menu/Embankment/Structural Fill Applications/3D Model/Adsorption Controlled



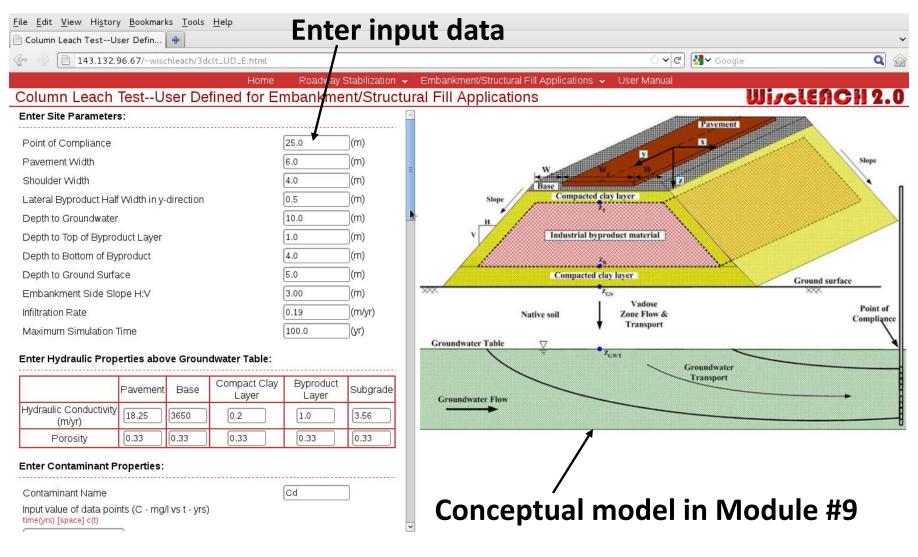
## **Data Input Windows for Module #8**

| <u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                   |                                                                               |                                     |                                                                                       |                                          |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|--------|
| 📄 Column Leach Testabsorption 🗣                                                                                                                                                                                                                                                                                                                |                                                                               |                                     |                                                                                       |                                          |        |
| 🚱 🕎 📔 143.132.96.67/~wischleach/3dclt_AC_E.html                                                                                                                                                                                                                                                                                                |                                                                               |                                     | 2 <b>~</b> C                                                                          | 🕽 🛃 🗸 Google                             | Q      |
| Hom                                                                                                                                                                                                                                                                                                                                            |                                                                               | and the second second second second | Structural Fill Applications 🐱 User Manual                                            |                                          |        |
| Column Leach Test - Adsorption Cont                                                                                                                                                                                                                                                                                                            | olled for Embankm                                                             | nent/Structura                      | I Fill Applications                                                                   | WirclEAC                                 | JH 2.0 |
| Enter Contaminant Properties:                                                                                                                                                                                                                                                                                                                  |                                                                               | <u>^</u>                            |                                                                                       |                                          |        |
| Contaminant Name<br>Are byproducts in different layers?<br>Initial Effluent Concentration from CLT test (mg/l)<br>Scaling Factor (Default = 1)<br>Retardation Factor in Compacted Clay Layer (Default = 1)<br>Retardation Factor in Byproduct Layer (Default = 1)<br>Retardation Factor in Subgrade (Default = 1)<br>Enter Aquifer Parameters: | Cadmium<br>OYes ®No<br>0.032<br>1.0<br>3.5<br>3.5<br>3.5<br>3.5               |                                     | ate input are simil<br>«cept:                                                         | re similar to Module #7                  |        |
| Saturated Hydraulic Conductivity of Aquifer<br>Porosity of Aquifer<br>Regional Hydraulic Gradient<br>Enter Expert Mode Parameters (Non-Default Built in):                                                                                                                                                                                      | 3650 (m/yr)<br>0.3<br>1e-3                                                    | -                                   | <ul> <li>For column leach te<br/>controlled module,<br/>data where adsorpt</li> </ul> | enter column leac<br>ion-controlled rele | ease   |
| Use Expert Mode?<br>Grid X<br>Grid Y<br>Grid Z<br>Time Step<br>Horizontal Dispersivity above Groundwater<br>Lateral Dispersivity above Groundwater                                                                                                                                                                                             | ©Yes ONo<br>5.0 (m)<br>0.5 (m)<br>0.3 (m)<br>2.0 (yr)<br>6e-3 (m)<br>6e-3 (m) | ·<br>·                              | can be assumed wit<br>and reversible sorpt                                            |                                          | near   |

### Module #9: Embankment/Structural Fill Applications (3D model) - User Defined Pattern



A computing tool to evaluate groundwater impacts from beneficial use of industrial byproducts in roadway stabilization and embankment/structural fill applications. The tool is based on three analytical solutions to the advection-dispersion-reaction equation that describe transport in the vadose zone and groundwater. The application was designed to be computationally efficient and can be used without experience in numerical modeling. © 2011. Developed by Dr. Lin Li at Jackson State University.


WiscLeach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#### Contact Information for Q & A:

Dr. Lin Li (lin.li@jsums.edu) Department of Civil and Environmental Engineering, Jackson State University P. O. Box 17068 Jackson, MS 39217-0168, US

Acknowledgement: Financial support for the development of WiscLeach software was provided by the Recycled Materials Resource Center and Wisconsin Department of Natural Resources Waste Reduction and Recycling Demonstration Grant and Alliant Energy.

 Select the menu/Embankment/Structural Fill Applications/3D Model/User Defined Pattern



## **Data Input Windows for Module #9**

| <u>File E</u> dit <u>V</u> iew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------|
| 📄 Column Leach TestUser Defin 💠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | ~          |
| © 143.132.96.67/~wischleach/3dclt_UD_E.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☆∨♂ Soogle                                                                                            | <b>Q</b> 🍙 |
| Image: Provide the second state of | <ul> <li>Embankment/Structural Fill Applications          <ul> <li>User Manual</li> </ul> </li> </ul> | 2.0        |
| Enter Aquifer Darametere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |            |

## **Software Developers**

- The algorithms used in WiscLEACH<sup>©</sup> 2.0 were developed by Dr. Lin Li of Jackson State University.
- The web-based WiscLEACH <sup>©</sup> 2.0 were developed by Dr. Lin Li, Dr. Duanjun Lu, and Ms. Cindy Mei Wu of Jackson State University.

## **Publications on WiscLEACH**<sup>©</sup>

- Li, L., B. Peng, F. Santos, Y. Li, and F. Amini, 2011, Groundwater Impacts from Leaching of Coal Combustion Products in Roadways Embankment Constructions, *Journal of ASTM International*, 8(8): 1-12.
- Cetin, B., Aydilek, A. and L. Li, 2011, Experimental and Numerical Analysis of Metal Leaching from Fly Ash Amended Highway Bases, *Resources, Conservation & Recycling,* In Print.
- Cetin, B., Aydilek, A. and L. Li, 2011, Leaching of Chromium Metal from High Carbon Fly Ash Stabilized Highway Base Layers, *Geo-Frontiers 2011*, 1066-1074, ASCE.
- Li, L., J. Li, and N. Kebede, 2010, Using WiscLEACH to Estimate Groundwater Impacts from Fly Ash Stabilized Layers in Roadways, *GeoFlorida 2010: Advances in Analysis, Modeling & Design*, D. Fratta, A. Puppala, B. Muhunthan (Eds), 199: 99-108, ASCE.
- Li, L., C.H. Benson, T. B. Edil, and B. Hatipoglu, 2006, Groundwater Impact from Coal Ash in Highways, *Waste and Resource Management*, 159(4): 151-162.
- Li, L., C.H. Benson, T. B. Edil, and B. Hatipoglu, 2006, WiscLEACH: A Model for Predicting Ground Water Impacts from Fly-Ash Stabilized Layers in Roadways, *Geotechnical Engineering in the Information Technology Age*, DeGroot, D.J., DeJong, J.T., Frost, D.J., Baise, L.G. (Eds), 187(58): 1-8, ASCE.